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Coupled dust-lattice solitons in monolayer plasma crystals

A. V. Ivlev, S. K. Zhdanov,* and G. E. Morfill
Centre for Interdisciplinary Plasma Science, Max-Planck-Institut fu¨r Extraterrestrische Physik, D-85741 Garching, Germany

~Received 28 May 2003; revised manuscript received 28 August 2003; published 15 December 2003!

Nonlinearly coupled dust-lattice~DL! waves in monolayer plasma crystals are studied theoretically. It is
shown that the high-frequency transverse~vertical! oscillations can form localized wave envelopes—solitons
coupled with ‘‘slow’’ longitudinal DL perturbations. Using the molecular dynamics simulations, the derived
soliton solution is shown to be stable.
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Recently, a series of papers has been published w
experiments on various nonlinear phenomena in comp
~dusty! plasmas, e.g., Mach cones, solitons, shocks, etc.,
reported@1–3#. Complex plasmas allow us to study differe
physical processes at the kinetic level@4,5#. In particular,
when ~negatively! charged microparticles are strong
coupled and form ordered structures, ‘‘plasma crysta
@6,7#, one can investigate the kinetics of nonlinear proces
in crystalline lattices. Plasma crystals ‘‘grown’’ under micr
gravity conditions do not experience ‘‘self-compressio
caused by the particle weight. Structures of such crys
formed in isotropic stress-free conditions are very similar
those observed in solid states, and therefore plasma cry
can be considered as a ‘‘test sample’’ for the kinetic study
e.g., phase transitions in Yukawa systems@8#. At the same
time, in ground-based experiments particles levitate in
gions with strongly inhomogeneous vertical electric fie
~e.g., in sheaths of rf electrodes!, where the electric force
balances gravity. Under these conditions, one can easily f
crystalline monolayers which are very convenient for wa
analysis@9,10#.

In this paper we investigate theoretically the nonlinea
coupled dust-lattice~DL! waves in monolayer plasma crys
tals. We show that the transverse~vertically polarized! waves
can form localized wave envelopes—coupled DL solito
Due to slow longitudinal DL perturbations induced by t
vertical oscillations, the particle density is increased in
soliton. The derived soliton solution is compared with resu
of molecular dynamics simulations and is shown to be sta

The motion of the charged particles is determined by
electrostatic interaction, which is the sum of the interparti
coupling and the interaction with the external confinem
field. For particles suspended in rf sheaths, a screened p
tial of the Yukawa type was shown to be a reasonable
proximation for the interaction in a horizontal direction@11#.
Also, the experimentally observed mean interparticle d
tance D0 is typically larger than the screening lengthl.
Therefore, it is usually sufficient to take into account on
the ‘‘nearest neighbor’’ interaction.

For the analysis of waves in crystalline monolayers,
use the so-called ‘‘particle string’’ model, which allows two
dimensional motion, in the longitudinal~horizontal, along
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the string axis! and transverse~vertical! directions@12,13#.
We assume no longitudinal confinement and a harmonic
tential well in the vertical direction, with eigenfrequencyV.
The nearest neighbor approximation along with the part
string model allows us to simplify the resulting equatio
substantially and, thus, to make the physics more ‘‘transp
ent.’’ The total interaction energy for a particle isUS5U1

1U21 1
2 MV2z2, whereU65(Q2/D6)e2D6 /l is the cou-

pling of the ‘‘central’’ particle with the ‘‘right’’ and the ‘‘left’’
neighbor, respectively,Q is the particle charge, andM is the
mass. Introducing the particle displacement in the horizon
and vertical directions,r5$x,z% ~similarly, r65$x6 ,z6% for
the right and the left neighbor, respectively!, we get the in-
terparticle distanceD65A(D01dx6)21dz6

2 , which de-
pends on therelative displacementwith respect to the right,
dr15r12r , and to the left,dr25r2r2 , neighbor.

The equation of the particle motion isM r̈52]US /]r .
Expanding the coupling energy in a series over the rela
displacementsdx6 anddz6 , we derive the following equa-
tions for the horizontal and vertical motion, respectively:

ẍ522k23~11k1 1
2 k2!e2k~dx2dx1!

13k24~11k1 1
2 k21 1

6 k3!e2k~dx2
2 2dx1

2 !

2 3
2 k24~11k1 1

3 k2!e2k~dz2
2 2dz1

2 !

1O~dx6
3 ,dx6dz6

2 ,dz6
4 !, ~1!

z̈1V2z5k23~11k!e2k~dz2dz1!

2 3
2 k25~11k1 1

3 k2!e2k~dz2
3 2dz1

3 !

23k24~11k1 1
3 k2!e2k~dx2dz22dx1dz1!

1O~dx6
2 dz6 ,dz6

5 !, ~2!

wherek5D0 /l*1 is the lattice parameter. Here and belo
the displacements are normalized by the screening len
r /l→r , time as well as all frequencies are normalized
VDLt→t andV/VDL→V, whereVDL

2 5Q2/Ml3 is the DL
frequency scale. In the linear regime Eqs.~1! and ~2! yield
the well-known dispersion relations for the longitudinal (i ,
horizontal! and transverse (', vertical! modes@13,14#,

v i
2~K !54V i

2sin2~ 1
2 kK !,

e,
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v'
2 ~K !5V224V'

2 sin2~ 1
2 kK !, ~3!

with V i
252k23(11k1 1

2 k2)e2k and V'
2 5k23(11k)e2k

the corresponding frequency scales. The wave vector is
malized by the screening lengthlK→K, so that theK range
in the first Brillouin zone is@15# 0<kK<p.

The transverse wave modev'(K) has an optical branch
and the longitudinal modev i(K) is described by an acousti
branch. Usually, the resonance frequency of the vertical
cillations exceeds substantially the frequency scales of b
modes@2,13,16#, V@V i;V' . Therefore in a nonlinear re
gime, when the modes are strongly coupled, the vertical
cillations can be treated as a source of a ‘‘high-freque
pressure’’ for the relatively slow longitudinal motion. Varia
tion of the particle density~along the string! which is in-
duced by these oscillations is positive, i.e., the ‘‘pressure
negative: The density grows because the relative vertical
placements increase and, hence, the horizontal repulsion
tween neighbors becomes weaker.

Let us first consider how the transverse oscillations wo
evolve in a ‘‘quasilinear’’ regime. The analysis can be co
veniently done in terms of the Hamiltonian formalism@17#,
considering vertical oscillations as quasiparticles
oscillatons—with energyv'(K). Equations of motion for
the oscillaton in the Hamiltonian form yieldK̇52]v' /]X

.4(V' /V)(]V' /]X)sin2(1
2kK) and Ẋ5]v' /]K.

2(V'
2 /V)sin(kK), whereX is the horizontal coordinate. Th

frequency scaleV' is a steep~exponential! function of the
particle densityn, with ]V' /]n.0. Hence, the force acting
on oscillatons~which is proportional toK̇) accelerates them
towards ]n/]X.0. This means that the region of high
density is a ‘‘potential well’’ for the quasiparticles. Accumu
lation of oscillatons in the region with higher density caus
further density increase, and therefore a modulational in
bility of coupled DL waves might be possible. The instabili
should be more efficient for shorter wavelengths, since

force on oscillatons is proportional to sin2(1
2kK). One can

easily find an analogy with other types of modulational
stability, e.g., of the Langmuir waves~plasmons! @17–19#.
The sign of dispersion is positive for plasmons,]vL /]K
.0 @sincevL

2(K)5vp
213K2vTe

2 , wherevp(n) is the elec-

tron plasma frequency andvTe
is the thermal velocity#, but is

negative for the DL oscillatons. At the same time, oscillato
cause an increase of the density, whereas the high-frequ
pressure of plasmons creates cavities. Also, the force on
cillatons is due to the gradient of the dispersion (K depen-
dent! term in Eq.~3!, but for plasmons it is determined b
the gradient ofvp(n). Therefore, the instability develops a
shorter wavelengths for oscillatons and at longer wa
lengths for plasmons, but its physical mechanism rema
essentially the same.

Now we derive equations for the coupled DL modes. W
consider the case when the spectrum of the vertical osc
tions is determined by a certain primary frequencyv, with
some wave numberK. Equations~1! and ~2! show that the
secondary harmonics generated in horizontal motion
have only even indices, and for the vertical oscillations o
06640
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odd indices. Therefore, one can present the perturbation
the form x5u(X,t)1B(X,t)e2i (vt2KX)1•••, and z
5A(X,t)ei (vt2KX)1C(X,t)e3i (vt2KX)1•••, whereu, A, B,
etc., are ‘‘smooth’’ functions ofX and t ~i.e., u]/]tu!v and
u]/]Xu!K). The first longitudinal termu represents the av
erage particle displacement in the string (2]u/]X is the
average density variation!, the first transverse term is dete
mined by the amplitudeA of vertical oscillations at the pri-
mary frequency. In order to describe the average den
variation in the string, we can retain in Eq.~1! only linearx
terms and the first coupling term}dz6

2 . The latter represents
the high-frequency pressure of oscillatons and is mostly
termined by the primary frequency term. This yields the f
lowing equation for the average displacement:

]2u

]t2
2Ci

2]2u

]X2
5Ci

2m i
]uAu2

]X
, ~4!

where Ci
2[(v i /K)2uK→05k2V i

2 is the ~squared! long-
wavelength longitudinal phase velocity andm i56k22@(1

1k1 1
3 k2)/(11k1 1

2 k2)#sin2(1
2kK) is the longitudinal cou-

pling coefficient. For the oscillations at the primary fr
quency, we substitutez5A(X,t)ei (vt2KX)1c.c. in Eq. ~2!
and get the equation for the complex amplitude:

~v22v'
2 !A5

]2A

]t2
1V'

2 S ,disp
2 ]2A

]X2
1LuAu2A1m'A

]u

]XD
12i S v

]A

]t
2V'

2 k sin~kK !
]A

]XD , ~5!

where ,disp
2 5k2cos(kK) is the ~squared! dispersion coeffi-

cient ~‘‘dispersion length’’!, L572k22@(11k1 1
3 k2)/(1

1k)#sin4(1
2kK) is the nonlinear coefficient, andm'512@(1

1k1 1
3 k2)/(11k)#sin2(1

2kK) is the transverse coupling co
efficient. In Eq.~5! we omitted the higher-order derivative
and nonlinear terms. Again, one can easily see a simila
between Eqs.~4!, ~5!, and the equations for the Langmu
modulational instability@18,20#. Equation~4! is equivalent to
the ion acoustic wave equation coupled to the electric field
the Langmuir wave via the high-frequency pressure~with
2]u/]X as the plasma density perturbation andA as the
electric field of the Langmuir wave!. Equation~5! is similar
to the equation for the Langmuir wave, with the couplin
}A]u/]X due to the acoustic density modulation. The d
ference is the nonlinear term}uAu2A.

One can easily see that the nonlinear and coupling te
in Eq. ~5! are of the same order. Eq.~4! yields 2]u/]X
}uAu2. Therefore, the modulational instability can be su
pressed due to nonlinearity. Furthermore, a balance betw
the dispersion term}]2A/]X2 and the resulting nonlinea
term can provide spatial localization of vertical oscillation
i.e., formation of a solitary wave. Possible soliton solution
Eqs. ~4! and ~5! should depend on the self-similar variab
j5X2Ut, so thatu5u(j) andA5A(j). The complex am-
plitude is A5uAueiC, where the ‘‘phase’’C is generally a
function of X and t. For the soliton solution we should con
2-2
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siderC5const. The transverse oscillations are already ta
into account via the factorei (vt2KX), and the additional spa
tial ~temporal! variation of the phase would just ‘‘renorma
ize’’ values of v and k. Hence, one can setA[uAu. The
imaginary terms in Eq.~5! ~those in parentheses with pre
actor 2i ) readily give an equation of characteristics f
A(X,t)5const, i.e., determine the soliton velocity. We g
U52k(V'

2 /v)sin(kK)[]v' /]K, which means that the soli
ton velocity is equal to the group velocity of the transve
mode. We see thatU is inversely proportional to the primar
frequencyv. Recall that we consider the casev.V@1,
and thereforeU is much smaller than the longitudinal acou
tic velocity Ci . Then, neglecting termsO(V22) in Eqs.~4!
and ~5! we finally derive the equations for the oscillatio
amplitudeA and the density variation2u8 in the soliton,

,disp
2 A95

dv2

V'
2

A2~L2m'm i!A
3, 2u85m iA

2, ~6!

where dv2[v22v'
2 is a deviation of the ~squared!

frequency from the linear dispersion. Weak nonlinear
which is assumed in Eq.~5! @and, hence, in Eq.~6!# requires
dv2 to be sufficiently small. The nonlinear coefficie
is modified due to the coupling, but remains alwa
negative: L2m'm i512$(11k1 1

3 k2)/@(11k)(11k

1 1
2 k2)#%sin4(1

2kK).0. Therefore the soliton solution is onl
allowed for positive frequency deviation, so that
,dv2/v2!1. ~This frequency deviation plays the role of
control parameter for the coupled DL soliton, in analogy
the Mach number excess over unity,M221, which is the
control parameter for the longitudinal DL soliton@2#.! The
dispersion length should be positive as well, i.e., cos(kK)
.0, which imposes the upper edge for the wave num
kK,p/2. This is because the dispersion of the transve
mode changes the sign at this point; the branchv'(K) be-
comes concave, so that nonlinearity and dispersion are
longer balancing each other.

The soliton solution of Eq.~6! has the following func-
tional form:

A~j!5A0cosh21~j/L !, 2u852u08cosh22~j/L !,
~7!

whereA0 andL are the soliton amplitude and width, respe
tively, and 2u08 is the depth of the density variation. Th
latter is related to the soliton amplitude via2u085m iA0

2.
Substituting these functions in Eq.~6! we obtainA0

252(L
2m'm i)

21(dv2/V'
2 ) and L25,disp

2 (V'
2 /dv2), or in terms

of the lattice parameter:

2u085
2ek

ksin2~ 1
2 kK !

dv2,

A0
25

kek

3 sin4~ 1
2 kK !

S 11k1 1
2 k2

11k1 1
3 k2D dv2,
06640
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kek

~11k!cos~kK !
dv2. ~8!

The obtained results formally correspond to the limitV
→` ~when U→0), but in fact they are valid as soon a
V2@1. As we mentioned above, this limit physically mea
that the resonance frequency of vertical oscillations is m
higher than the frequency scale of the DL wave,VDL . This
is true for experiments with crystalline monolayers, whe
the resonance frequency is usually 15–17 Hz andVDL/2p is
about a few hertz@2,10,16#. In this limit we can also neglec
higher harmonics in perturbations, which scale
}(mv)22Am ~wherem is the harmonic index!, in particular,
the second longitudinal harmonicBe2i (vt2KX). Since B
}v22A2, the termsAB}A3 in Eq. ~2! formally should affect
Eq. ~5! for the primary frequency amplitude, but the sma
ness ofv22 allows us to omit them.

In order to check the stability of the coupled DL solito
we also performed molecular dynamics simulations in a o
dimensional particle string. For this purpose we solved eq
tions of motion for particles interacting via the Yukawa p
tential ~with the nearest neighbor coupling!. No confinement
was applied along the string, in the vertical direction t
particles were confined in the harmonic potential, and
horizontal transverse motion was restricted. Equations~7!

FIG. 1. Molecular dynamics simulations of the coupled DL so
ton in a particle string. The number of particles in the simulation
600. Dimensionless parameters~see text! are vertical resonance fre
quency V540, deviation of the squared frequencydv257
31024, lattice parameterk51, and wave vectorK50.64. The
shown results are for the timeVt51000.~a! Vertical displacements
of particles vs the horizontal coordinatej, obtained in the simula-
tion ~dots connected by solid line! and the theoretical amplitude
profile @A(j) from Eqs.~7! and ~8!, dashed line#. Vertical oscilla-
tions are at the primary frequencyv. ~b! Average variation of the
particle density along the string obtained in the simulation. It co
cides with the theoretical curve@2u8(j) from Eqs. ~7! and ~8!#
with an accuracy;1022%.
2-3
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and ~8! were chosen as the initial conditions. We solved
equations using the standard Runge-Kutta algorithm w
adaptive time step. Figure 1 shows one example with
profile of the transverse amplitudeA as well as the induced
density variation along the string,2u8, obtained in the
simulations. One can see that the perturbations in the form
the theoretical solution@Eqs.~7! and~8!# appear to be stable

In the above derivation we neglected dissipation, in p
ticular, the role of neutral friction on particles. In fact, on
can speak about ‘‘weakly dissipative solitons,’’ when the d
sipation time scale is much longer than the time scale of
soliton formation, which is of the order ofVDL

21 . In this case,
F

.

E
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the soliton decays in time, but its form is always ‘‘adjuste
to the ‘‘true’’ soliton solution corresponding to a momenta
amplitude. For instance, in recent experiments with long
dinal DL solitons@2#, the dissipation time scale due to th
Epstein drag is about 0.3–0.5 s, whereasVDL

21

;0.01–0.03 s, so that the observed decaying perturbat
are very well described by the ‘‘nondissipative’’ solution.

In conclusion, we showed that the nonlinear longitudin
and transverse oscillations in a monolayer plasma crystal
form a coupled DL soliton, a spatially localized transver
wave envelope with the increased particle density. Numer
simulations suggest that the derived soliton solution is sta
ys.
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