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Coupled dust-lattice solitons in monolayer plasma crystals
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Nonlinearly coupled dust-lattic€DL) waves in monolayer plasma crystals are studied theoretically. It is
shown that the high-frequency transvefsertical oscillations can form localized wave envelopes—solitons
coupled with “slow” longitudinal DL perturbations. Using the molecular dynamics simulations, the derived
soliton solution is shown to be stable.
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Recently, a series of papers has been published whethe string axi$ and transversévertical) directions[12,13.
experiments on various nonlinear phenomena in compleXVe assume no longitudinal confinement and a harmonic po-
(dusty plasmas, e.g., Mach cones, solitons, shocks, etc., aitential well in the vertical direction, with eigenfrequenQy
reported 1—3]. Complex plasmas allow us to study different The nearest neighbor approximation along with the particle
physical processes at the kinetic leydl5]. In particular, string model allows us to simplify the resulting equations
when (negatively charged microparticles are strongly substantially and, thus, to make the physics more “transpar-
coupled and form ordered structures, “plasma crystals’ent.” The total interaction energy for a particle isy=U ,
[6,7], one can investigate the kinetics of nonlinear processes U_+3MQ?z2, whereU_.=(Q%A.)e *+/* is the cou-
in crystalline lattices. Plasma crystals “grown” under micro- pling of the “central” particle with the “right” and the “left”
gravity conditions do not experience “self-compression” neighbor, respectivel\Q is the particle charge, ard is the
caused by the particle weight. Structures of such crystalgass. Introducing the particle displacement in the horizontal
formed in isotropic stress-free conditions are very similar toand vertical directions,={x,z} (similarly, r . ={x.. ,z. } for
those observed in solid states, and therefore plasma crystdlge right and the left neighbor, respectivelye get the in-
can be considered as a “test sample” for the kinetic study ofterparticle distanceA . = \/(Ay+ 6x..)%+ 6z%, which de-
e.g., phase transitions in Yukawa systefi§ At the same pends on theelative displacementith respect to the right,
time, in ground-based experiments particles levitate in resr  =r_—r, and to the leftsr_=r—r_, neighbor.
gions _W|th strongly inhomogeneous vertical equtnc fields The equation of the particle motion Mt = —dUs /dr.
(e.g., in sheaths of rf electrodesvhere the electric force ypanding the coupling energy in a series over the relative
balancgs gravity. Under th(_ese conditions, one can easily for'ﬁisplacementsﬁxi and oz.. , we derive the following equa-
crystalline monolayers which are very convenient for waveijons for the horizontal and vertical motion, respectively:
analysis[9,10].

In this paper we investigate theoretically the nonlinearly
coupled dust-latticéDL) waves in monolayer plasma crys-

X=—2k 31+ k+1k?)e " (Sx_5X.)

tals. We show that the transversertically polarized waves +3k 41+ k+ 22+ Ek8)e K (8x% — 6x2)

can form localized wave envelopes—coupled DL solitons.

Due to slow longitudinal DL perturbations induced by the =2k Y1+ k+ 3Kk e (822 — 867%)

vertical oscillations, the particle density is increased in the 3 5 s

soliton. The derived soliton solution is compared with results +O(0X% 60X+ 075, 6Z2), 1)

of molecular dynamics simulations and is shown to be stable.

The motion of the charged particles is determined by the 7. 02;— ,~3(1+ x)e %(5z_6z,)
electrostatic interaction, which is the sum of the interparticle
coupling and the interaction with the external confinement —3k75(1+ K+%K2)e”‘(5z§—5zi)
field. For particles suspended in rf sheaths, a screened poten- 4 Lo
tial of the Yukawa type was shown to be a reasonable ap- —3k (1t kt3k)e (6 b6z — X, 6zy)
proximation for the interaction in a horizontal directipit]. +O(8X2 2. ,82°) )
Also, the experimentally observed mean interparticle dis- s

tance A, is typically larger than the screening len . .
0 ypicaly arg g gth wherexk=A,/A=1 is the lattice parameter. Here and below,

Therefore, it is usually sufficient to take into account onl i . .
y ythe displacements are normalized by the screening length,

the "nearest neighbor” interaction. rIx—r, time as well as all frequencies are normalized to
For the analysis of waves in crystalline monolayers, we'* " q

2 _ "2 3
use the so-called “particle string” model, which allows two- Qp t—t andQ/Qp — €, whereQlp =Q“M\* is the DL

dimensional motion, in the longitudinghorizontal, along frequency scale. In the linear regime E¢b). and (2) yield
the well-known dispersion relations for the longituding) (

horizonta) and transversel(, vertica) modes[13,14),

*Permanent address: Moscow Engineering Physics Institute,
115409 Moscow, Russia. wﬁ(K)=4Qﬁsinz(%KK),
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2 —02 20201 odd indices. Therefore, one can present the perturbations in
K)=02-40%sirf(3kK), 3 , P p
w1 (K) 18I (zxK) ® the form x=u(X,t)+B(X,t)e? (=K. .. and z
_ i(wt—KX) 3i(wt—KX) .
with 0F=2k"*(1+ «+3x%)e " and QF =« (1 + x)e tA(X}t)e“ m tr;fcéxt’it)r(la K andt (ie. \Ilg??gtr[eg and
the corresponding frequency scales. The wave vector is nofbféB(TiKs Tor?e firsLtI Ignoiti doina?ternu 'ree" resentsa;hz av-
malized by the screening lengitK — K, so that theK range erage I’)tl le displ rﬁ nt in th trinp 19X is th
in the first Brillouin zone i§15] O0< kK=< ge particle displaceme e string qu s the

The transverse wave mode, (K) has an optical branch average density variatipnthe first transverse term is deter-

L : : . mined by the amplitud@ of vertical oscillations at the pri-
and the longitudinal mode(K) is described by an acoustic mary frequency. In order to describe the average density

branch. Usually, the resonance frequency of the vertical OS- riation in the string. we can retain in Ed) only linearx
cillations exceeds substantially the frequency scales of bot ' 9, W 2 y
erms and the first coupling termézZ. . The latter represents

modes[2,13,16, Q> ~Q, . Therefore in a nonlinear re- the hiah-f ‘ illat dqi v d
gime, when the modes are strongly coupled, the vertical os- € high-irequency pressure of osciliatons and 1S mostly de-

cillations can be treated as a source of a “high-frequenc;}ermimd by the primary frequency term. This yields the fol-

pressure” for the relatively slow longitudinal motion. Varia- owing equation for the average displacement:

tion of the particle densityalong the stringg which is in-
P yalong Y a%u d%u 3|A|?

duced by these oscillations is positive, i.e., the “pressure” is P L e L 4)
negative: The density grows because the relative vertical dis- o2 I %2 1o

placements increase and, hence, the horizontal repulsion be-

tween neighbors becomes weaker. where Cff(wu/K)zkﬂo:KZQﬁ is the (squared long-

Let us first consider how the transverse oscillations wouldyavelength longitudinal phase velocity aWIZGK_z[(l
evolve Iin g “quasilinear” rfegrime. Th(la analy?is cari{be]con-+K+%Kz)/(1+K+%K2)]3inz(%KK) is the longitudinal cou-
veniently done in terms of the Hamiltonian formaligdi], . s - .
conside)r/ing vertical oscillations as quasiparticles—pllng coefﬂuentt). I_:or t_he OSC'Ilzii(t,L?,r',fx)at the primary fre-
oscillatons—with energy o, (K). Equations of motion for quency, we su St.IIUte_A(X’t)e re.c. |n' Eg.(2)

. and get the equation for the complex amplitude:
the oscillaton in the Hamiltonian form yield = — dw, /X
=4(Q, 1Q)(9Q, 10X)sif(ikK) and X=dw, [dK= . PA L[ PA ou
—(Q219)sin(xK), whereX is the horizontal coordinate. The (@~ @1)A= F"’QL edispﬁ+A|A|2A+MLA(3_X
frequency scald), is a steeplexponentigl function of the
particle densityn, with 92, /on>0. Hence, the force acting

on oscillatongwhich is proportional tK) accelerates them
towards dn/dX>0. This means that the region of higher
density is a “potential well” for the quasiparticles. Accumu- where efjisp: k?cos(K) is the (squaredl dispersion coeffi-
lation of oscillatons in the region with higher density causescient (“dispersion length), A =72« ?[(1+«+3«?)/(1
further density increase, and therefore a modulational insta; 401 ; ; ”n _

. P : : LA n'(3xK) is th | fficient, =12 (1
bility of coupled DL waves might be possible. The instability K)]Sll 2(2K ) is e_ ncznmgar coefficient, and, ,2[(
should be more efficient for shorter wavelengths, since the” K5 &%)/(1+ x)]sir®(;«K) is the transverse coupling co-
force on oscillatons is proportional to ${axK). One can efficient. .In Eq.(5) we oml_tted the h|gher—9rder derlvgtlyes_

S . . . and nonlinear terms. Again, one can easily see a similarity
easn_y find an analogy with o'_[her types of modulational 'n'between Eqs(4), (5), and the equations for the Langmuir
stablht.y, €.g., Qf the. Lar!gmU|r'\{vave($)lasmon$ [17-19. modulational instability 18,20. Equation(4) is equivalent to
The sign of dispersion is positive for plasmongy, /dK

. . the ion acoustic wave equation coupled to the electric field of
2 _ 2 2.2
>0 [since w (K) = wp+3K 7 , wherewy(n) is the elec- o Langmuir wave via the high-frequency pressGséth

tron plasma frequency and; _is the thermal velocity butis  —gu/9X as the plasma density perturbation afdas the
negative for the DL oscillatons. At the same time, oscillatonselectric field of the Langmuir wayeEquation(5) is similar
cause an increase of the density, whereas the high-frequenty the equation for the Langmuir wave, with the coupling
pressure of plasmons creates cavities. Also, the force on 0s-Adu/dX due to the acoustic density modulation. The dif-
cillatons is due to the gradient of the dispersidh depen-  ference is the nonlinear term|A|?A.
dend term in Eq.(3), but for plasmons it is determined by One can easily see that the nonlinear and coupling terms
the gradient ofwy(n). Therefore, the instability develops at in Eq. (5) are of the same order. E¢4) yields —du/dX
shorter wavelengths for oscillatons and at longer waves|A|2. Therefore, the modulational instability can be sup-
lengths for plasmons, but its physical mechanism remainpressed due to nonlinearity. Furthermore, a balance between
essentially the same. the dispersion termc9?A/dX? and the resulting nonlinear
Now we derive equations for the coupled DL modes. Weterm can provide spatial localization of vertical oscillations,
consider the case when the spectrum of the vertical oscilla-e., formation of a solitary wave. Possible soliton solution of
tions is determined by a certain primary frequergywith  Egs.(4) and (5) should depend on the self-similar variable
some wave numbeK. Equations(1) and (2) show that the ¢&=X-—Ut, so thatu=u(¢) andA=A(£). The complex am-
secondary harmonics generated in horizontal motion caplitude is A=|Ale'", where the “phase™¥ is generally a
have only even indices, and for the vertical oscillations onlyfunction of X andt. For the soliton solution we should con-

+ 2i

oA — oA
wE—QLKSIr'I(KK)O,)—X , (5)
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siderW = const. The transverse oscillations are already takerg ~ 0.50f

into account via the factae' (' KX and the additional spa-

tial (temporal variation of the phase would just “renormal- 0.25}

ize” values of w and k. Hence, one can se&=|A|. The ,

imaginary terms in Eq(5) (those in parentheses with pref- 0.00 pans

actor 2) readily give an equation of characteristics for 0.25|

A(X,t)=const, i.e., determine the soliton velocity. We get ' i

U= —k(Q?/w)sin(kK)=dw, /K, which means that the soli- -0.50} ) ] ) ]

density variation vertical displacem

ton velocity is equal to the group velocity of the transverse 0.050

mode. We see thad is inversely proportional to the primary b
frequencyw. Recall that we consider the case=0>1,

and therefordJ is much smaller than the longitudinal acous- 0.025¢

tic velocity C. Then, neglecting term®(Q~?) in Egs.(4)

and (5) we finally derive the equations for the oscillation 0.000 . : . : .
amplitudeA and the density variatior-u’ in the soliton, -150 -100 -50 0 50 100 150

3

2

2 " dw 3 ’ 2
Cais :?A_(A_MJ_MH)A ) —u'=p A%, (6)

i FIG. 1. Molecular dynamics simulations of the coupled DL soli-

ton in a particle string. The number of particles in the simulation is
600. Dimensionless parametésge text are vertical resonance fre-
quency Q) =40, deviation of the squared frequencyw?=7

X 1074, lattice parametekc=1, and wave vectoK=0.64. The

where dw’=w’—w? is a deviation of the (squared
frequency from the linear dispersion. Weak nonlinearity
Wh|20h IS assume'd'ln Eq5) [and, hence, in ,Eqﬁ)] requ',re,s shown results are for the tirfet=1000. (a) Vertical displacements
dw” to be sufficiently small. The nonlinear coefficient o¢ ,,icles vs the horizontal coordinage obtained in the simula-
is modified due to the coupling, but remains alwaysion (dots connected by solid lineand the theoretical amplitude
negative: A=y =121+ k+ 362 /[(1+ k) (1+ & profile [A(£) from Eqs.(7) and (8), dashed ling Vertical oscilla-
+ 3 k%) ]¥sirf(3xK)>0. Therefore the soliton solution is only tions are at the primary frequeney. (b) Average variation of the
allowed for positive frequency deviation, so that O particle density along the string obtained in the simulation. It coin-
< dw’lw?<1. (This frequency deviation plays the role of a cides with the theoretical curvie-u’(¢) from Egs.(7) and (8)]
control parameter for the coupled DL soliton, in analogy toWith an accuracy-10"2%.
the Mach number excess over unityi?—1, which is the
control parameter for the longitudinal DL solitd&].) The o
dispersion length should be positive as well, i.e., g&3( L’éﬁ&w
>0, which imposes the upper edge for the wave number (1+x)cod kK)
kK< /2. This is because the dispersion of the transverse
mode changes the sign at this point; the branci{K) be-
comes concave, so that nonlinearity and dispersion are
longer balancing each other.

The soliton solution of Eq(6) has the following func-
tional form:

2, (8

"Phe obtained results formally correspond to the lirfiit
—o (when U—0), but in fact they are valid as soon as
0?>1. As we mentioned above, this limit physically means
that the resonance frequency of vertical oscillations is much
_ 1 L 72 higher than the frequency scale of the DL wa¥g,, . This
A(§)=Aocosh *(¢/L), —u’=—ugcosh “(¢/L), is true for experiments with crystalline monolayers, where
the resonance frequency is usually 15—-17 Hz Qpgl/27 is
. ] ] about a few hert2,10,14. In this limit we can also neglect
whereAq andL are the soliton amplitude and width, respec-pigher harmonics in  perturbations, which scale as
tively, and —ug is the depth of the density variation. The «(mw) ~2A™ (wherem is the harmonic index in particular,
latter is related to the soliton amplitude viau(g:,uHAS. the second longitudinal harmoniBe?(“t=¥X) " Since B
Substituting these functions in E(6) we obtainAi=2(A oo 2A2 the termsAB=A3 in Eq. (2) formally should affect
— ) " H(S0?0F) and L?=€5,(0%/5w?), or in terms  Eq. (5) for the primary frequency amplitude, but the small-
of the lattice parameter: ness ofw 2 allows us to omit them.
In order to check the stability of the coupled DL soliton,
26K we also performed molecular dynamics simulations in a one-
Svarera—— Sw?, dimensional particle string. For this purpose we solved equa-
KSIn(3 kK) tions of motion for particles interacting via the Yukawa po-
tential (with the nearest neighbor couplindNo confinement
) was applied along the string, in the vertical direction the
2
w°,

!

particles were confined in the harmonic potential, and the

) ke 1+ k+3K2
horizontal transverse motion was restricted. Equatitfs

A:
O Bsint(Lek) | 1+ k+Lk?
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and (8) were chosen as the initial conditions. We solved thethe soliton decays in time, but its form is always “adjusted”
equations using the standard Runge-Kutta algorithm withio the “true” soliton solution corresponding to a momentary
adaptive time step. Figure 1 shows one example with thamplitude. For instance, in recent experiments with longitu-
profile of the transverse amplitudeas well as the induced dinal DL solitons[2], the dissipation time scale due to the
density variation along the string;u’, obtained in the Epstein drag is about 0.3-0.5 s, wherea®y}
simulations. One can see that the perturbations in the form 0t 0.01-0.03 s, so that the observed decaying perturbations
the theoretical solutiofEqs.(7) and(8)] appear to be stable. are very well described by the “nondissipative” solution.

In the above derivation we neglected dissipation, in par- In conclusion, we showed that the nonlinear longitudinal
ticular, the role of neutral friction on particles. In fact, one and transverse oscillations in a monolayer plasma crystal can
can speak about “weakly dissipative solitons,” when the dis-form a coupled DL soliton, a spatially localized transverse
sipation time scale is much longer than the time scale of thevave envelope with the increased particle density. Numerical
soliton formation, which is of the order 615 . In this case, simulations suggest that the derived soliton solution is stable.
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